Sains Malaysiana 54(10)(2025):
2391-2402
http://doi.org/10.17576/jsm-2025-5410-05
Fitness of Malaysian Imidazolinone-Resistant
Weedy Rice and Their Growth Responses to Various Herbicides
(Kecergasan Padi Angin Rintang Imidazolinone Malaysia dan Tindak Balas Pertumbuhannya terhadap Pelbagai Racun Herbisida)
MOHAMMAD AZIZI HJ. JAMIL1,3,*, MUHAMMAD SAIFUL AHMAD HAMDANI1,2, ZULKARAMI BERAHIM1, NIK AMELIA NIK
MUSTAPHA1, MAHMUDUL HASAN2 & DILIPKUMAR
MASILAMANY4
1Laboratory
of Climate-Smart Food Crop Production, Universiti Putra Malaysia, 43400 UPM Serdang,
Selangor, Malaysia
2Department
of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang,
Selangor, Malaysia
3Department
of Crop Science, Faculty of Agricultural and Forestry Sciences, Universiti Putra Malaysia Sarawak, 97008 Bintulu, Sarawak,
Malaysia
4Rice
Research Centre, Malaysian Agricultural Research and Development Institute
(MARDI), MARDI Seberang Perai, 13200 Kepala Batas, Pulau Pinang,
Malaysia
Received: 22 April 2025/Accepted: 12 August 2025
Abstract
The Ser-653-Asn mutation has been identified as
the primary factor responsible for imidazolinone (IMI)-resistant weedy rice in Malaysia. This has led to inquiries regarding
whether this specific mutation might impose a fitness penalty on the weedy rice
population. Consequently, this research examines the fitness of IMI-resistant
weedy rice and evaluates its growth responses to different herbicide modes of action
(MOA). In the first experiment, the IMI-resistant weedy rice, susceptible weedy
rice, and IMI-rice were germinated. Subsequently, the weedy rice seedlings were
transplanted interspersed with IMI-rice at varying planting densities. The
populations were categorised into herbicide-treated and untreated groups.
Photosynthesis parameters were measured at 30, 45, 60, and 75 days after sowing
(DAS). Morphological parameters such as leaf area, plant height, dry weight,
and tiller numbers were collected after 80 DAS. In the second experiment, the
IMI-resistant weedy rice was subjected to different herbicide modes of action
(MOA) to evaluate their growth responses. The study was carried out in two
parts: Pre-emergence and post-emergence pot trial. In pre-emergence pot trial,
the study was conducted using pre-germinated seeds in petri dishes and treated
with pretilachlor at 1, 3 and 5 DAS. For post-emergence pot trial,
pre-germinated seeds were planted in trays, and at 1-2 leaf stage were treated
with quinclorac, imazethapyr and clethodim at the recommended rate. The
germination rate and plant height were measured in pre-emergence pot trials
after 14 DAS, while survivability and dry weight were recorded in
post-emergence pot trials after 21 DAS. A slight fitness cost was observed in
IMI-resistant weedy rice, in which it has larger leaf areas and shorter plant
height compared to IMI-susceptible weedy rice and MR220CL2 rice. There were no
significant differences between the populations in the other morphological parameters
observed. In the growth response study, IMI-resistant weedy rice has been
observed to have different responses to different herbicide’s MOA. Pretilachlor
was effective when applied at 1 DAS, and its efficacy reducing when applied
later. Clethodim was effective in controlling IMI-resistant weedy rice,
quinclorac was ineffective and imazethapyr was only effective in controlling
IMI-susceptible weedy rice. Further studies are necessary to establish a
standardised assessment of fitness costs and to employ and integrate other MOAs
in the management of weedy rice.
Keywords: Fitness cost; herbicide resistance; imidazolinone; MOA; weedy rice
Abstrak
Mutasi Ser-653-Asn telah dikenal pasti sebagai faktor utama yang menyebabkan padi angin rintang-imidazolinone (IMI)
di Malaysia. Penemuan ini telah menimbulkan persoalan sama ada mutasi tersebut memberi kesan penalti kecergasan kepada populasi padi angin berkenaan.
Oleh itu, kajian ini dijalankan untuk menilai kecergasan padi angin rintang-IMI dan tindak balas pertumbuhannya terhadap pelbagai mod tindakan (MOA) racun rumpai. Dalam uji kaji pertama, padi angin rintang-IMI, padi angin rentan dan padi IMI telah dicambahkan. Anak benih padi angin kemudiannya dipindahkan dan ditanam secara berselang-seli dengan padi IMI pada kepadatan tanaman yang berbeza. Populasi ini dibahagikan kepada kumpulan dirawat dengan racun rumpai dan kumpulan tidak dirawat. Parameter fotosintesis diukur pada 30, 45, 60 dan 75 hari selepas tabur (HST).
Parameter morfologi seperti luas daun, tinggi pokok, berat kering dan bilangan sulur direkodkan selepas 80 HST. Dalam uji kaji kedua, padi angin rintang-IMI turut diuji dengan pelbagai mod tindakan racun rumpai untuk menilai tindak balas pertumbuhan. Kajian ini dibahagikan kepada dua: percubaan dalam pasu secara pracambah dan pascacambah. Dalam percubaan pracambah, biji benih pracambah diletakkan dalam piring petri dan dirawat dengan pretilachlor pada 1, 3 dan 5 HST. Bagi percubaan pascacambah, biji benih pracambah ditanam dalam dulang dan dirawat dengan quinclorac, imazethapyr dan clethodim pada peringkat 1-2 daun, mengikut kadar yang disyorkan. Kadar percambahan dan tinggi pokok diukur dalam ujian pracambah selepas 14 HLT, manakala kadar kelangsungan hidup dan berat kering direkodkan dalam ujian pascacambah selepas 21 HST. Kesan penalti kecergasan yang kecil telah diperhatikan pada padi angin rintang-IMI, yang mana ia mempunyai luas daun yang lebih besar dan ketinggian yang lebih rendah berbanding padi angin rentan dan padi MR220CL2. Tiada perbezaan signifikan diperhatikan dalam parameter morfologi yang
lain. Dalam kajian tindak balas pertumbuhan, padi angin rintang IMI menunjukkan tindak balas yang berbeza terhadap pelbagai MOA racun rumpai lain. Pretilachlor berkesan apabila digunakan pada 1 HLT dan keberkesanannya menurun jika dirawat lewat. Clethodim didapati berkesan dalam mengawal padi angin rintang IMI, manakala quinclorac tidak berkesan dan imazethapyr hanya berkesan ke atas padi angin rentan. Kajian lanjutan diperlukan untuk menilai kesan penalti kecergasan secara piawai dan bagi menerapkan serta menggabungkan MOA lain dalam pengurusan padi angin.
Kata kunci: Imidazolinone; kerintangan racun rumpai; kos kecergasan; MOA; padi angin
REFERENCES
Anthimidou, E., Ntoanidou, S., Madesis, P. & Eleftherohorinos, I. 2020. Mechanisms of Lolium rigidum multiple resistance to ALS- and ACCase-inhibiting
herbicides and their impact on plant fitness. Pesticide Biochemistry and
Physiology 164: 65-72.
Ayalew,
T., Yoseph, T., Högy, P. & Cadisch,
G. 2022. Leaf growth, gas exchange and assimilation performance of cowpea
varieties in response to Bradyrhizobium inoculation. Heliyon 8(1): e08746.
Azmi,
M., Alias, I., Abu Hassan, D., Ayob, A.H., Azmi, R., Badrulhadza,
A., Maisarah, M.S., Harun, M., Othman, O., Saad, A., Sariam,
O., Siti, N.M., Syahrin, S. & Yahaya, S. 2008. Manual Teknologi Penanaman Padi Lestari. Malaysian Agricultural Research and
Development Institute (MARDI): Serdang, Selangor.
Brabham,
C., Norsworthy, J., Sha, X., Varanasi, V. & González-Torralva, F. 2022. Benzobicyclon efficacy is affected by plant growth stage, HPPD
inhibitor sensitive 1 (HIS1) expression and zygosity in weedy rice (Oryza
sativa). Weed Science 70(3): 328-334.
Chen,
L., Gu, G., Wang, C., Chen, Z., Yan, W., Jin, M., Xie, G., Zhou, J., Deng, X.W.
& Tang, X. 2021. Trp548Met
mutation of acetolactate synthase in rice confers resistance to a broad
spectrum of ALS-inhibiting herbicides. The Crop Journal 9(4): 750-758.
da
Costa, T.P.S., Hall, C.J., Panjikar, S., Wyllie,
J.A., Christoff, R.M., Bayat, S., Hulett, M.D., Abbott, B.M., Gendall, A.R. & Perugini,
M.A. 2021. Towards novel herbicide modes of action by inhibiting lysine
biosynthesis in plants. eLife 10: e69444.
Dilipkumar, M.,
Shah Shari, E., Lee Chuen, N., Tse Seng, C. & Singh Chauhan, B. 2021. Pre
and post control of weedy rice and selected rice weeds with premix of imazapic and imazapyr at different ratios. Malaysian
Applied Biology 50(3): 87-93.
Fang,
J., Wan, C., Wang, W., Ma, L., Wang, X., Cheng, C., Zhou, J., Qiao, Y. & Wang,
X. 2020. Engineering herbicide-tolerance rice expressing an acetohydroxyacid synthase with a single amino acid deletion. International Journal of
Molecular Sciences 21(4): 1265.
Gherekhloo, J., Hassanpour-bourkheili, S., Hejazirad,
P., Golmohammadzadeh, S., Vazquez-Garcia, J.G. &
De Prado, R. 2021. Herbicide resistance in Phalaris species: A review. Plants 10(11): 2248.
Gomes,
H.L.L., Sambatti, V.C. & Dalazen, G. 2020. Sourgrass control in response to the association of 2,4-D
to ACCase inhibitor herbicides. Bioscience Journal 36(4): 1126-1136.
Hassanpour-Bourkheili, S., Gherekhloo, J., Kamkar, B. & Ramezanpour, S.S. 2020a.
Comparing fitness cost associated with haloxyfop-R
methyl ester resistance in winter wild oat biotypes. Planta Daninha 38: e020213759.
Hassanpour-Bourkheili, S., Heravi, M., Gherekhloo, J., Alcántara-de la
Cruz, R. & De Prado, R. 2020b. Fitness cost of imazamox resistance in wild
poinsettia (Euphorbia heterophylla L.). Agronomy 10(12): 1859.
Huang, L., Zhao, W. & Shao, M. 2021. Response of plant physiological
parameters to soil water availability during prolonged drought is affected by
soil texture. Journal of Arid Land 13(7): 688-698.
Jin, M., Chen, L., Deng, X.W. & Tang, X. 2022. Development of herbicide
resistance genes and their application in rice. Crop J. 10(1): 26-35.
Juliano, L.M., Donayre, D.K.M., Martin, E.C. & Beltran, J.C. 2020.
Weedy rice: An expanding problem in direct-seeded rice in the Philippines. Weed
Biology and Management 20(2): 27-37.
Li, H.Y., Guo, Y., Jin, B.Y., Yang, X.F. & Kong, C.H. 2023.
Phytochemical cue for the fitness costs of herbicide-resistant weeds. Plants 12(17): 3158.
Liu, D., Jia, Q., Li, J., Zhang, P., Ren, X. & Jia, Z. 2020. Increased
photosynthesis and grain yields in maize grown with less irrigation water
combined with density adjustment in semiarid regions. PeerJ 8: e9959.
Liu, R., Singh, V., Zhou, X.G. & Bagavathiannan, M. 2021. Stakeholder
and field surveys on weed issues and research needs in rice production in
Texas. Weed Technology 35(2): 242-250.
Mollaee, M., Matloob, A., Mobli, A., Thompson, M. & Chauhan, B.S. 2020.
Response of glyphosate-resistant and susceptible biotypes of Echinochloa
colona to low doses of glyphosate in different soil moisture conditions. PLoS
ONE 15(5): e0233428.
Nazir, A., Anwar Bhat, M., Bhat, T.A., Fayaz, S., Mir, M.S., Basu, U.,
Ahanger, S.A., Altaf, S., Jan, B., Lone, B.A., Mushtaq, M., El-Sharnouby, M.,
Skalicky, M., Brestic, M. & El Sabagh, A. 2022. Comparative analysis of
rice and weeds and their nutrient partitioning under various establishment
methods and weed management practices in temperate environment. Agronomy 12(4): 816.
Patterson, J.A., Norsworthy, J.K., Butts, T.R. & Gbur, E.E. 2022.
Benzobicyclon for weedy rice control in quizalofop- and imidazolinone-resistant
rice systems. Weed Technology 36(4): 497-505.
Piveta, L.B., Roma-Burgos, N., Noldin, J.A., Refatti, J.P., Oliveira, C.
& Avila, L.A. 2020. Response of imidazolinone-resistant and -susceptible
weedy rice populations to imazethapyr and increased atmospheric CO2. Planta Daninha 38: 1-9.
R Core Team. 2025. R: A language and environment for statistical computing.
Vienna, Austria. https://www.R-project.org Accessed on 31 May 2024.
Rahma Harti, A.O., Sakhidin, S., Muhammad Rif’an & Totok Agung. 2024.
Agro-climatic factors and their influence on sustainable soybean production. International
Journal of Advanced Multidisciplinary 2(4): 969-978.
Rangani, G., Rouse, C.E., Saski, C., Noorai, R.E., Shankar, V.,
Lawton-Rauh, A.L., Werle, I.S. & Roma-Burgos, N. 2022. High resistance to
quinclorac in multiple-resistant Echinochloa colona associated with
elevated stress tolerance gene expression and enriched xenobiotic
detoxification pathway. Genes 13(3): 515.
Roma-Burgos, N., Butts, T.R., Werle, I.S., Bottoms, S. &
Mauromoustakos, A. 2021. Weedy rice update in Arkansas, USA, and adjacent
locales. Weed Science 69(5): 514-525.
Ruzmi, R., Ahmad-Hamdani, M.S. & Mazlan, N. 2020. Ser-653-Asn
substitution in the acetohydroxyacid synthase gene confers resistance in weedy
rice to imidazolinone herbicides in Malaysia. PLoS ONE 15(9): e0227397.
Ruzmi, R., Ahmad-Hamdani, M.S., Abidin, M.Z.Z. & Roma-Burgos, N. 2021.
Evolution of imidazolinone-resistant weedy rice in Malaysia: the current
status. Weed Science 69(5): 598-608.
Saini, R.K., Kleemann, S.G.L., Preston, C. & Gill, G.S. 2015.
Alternative herbicides for the management of clethodim-resistant rigid ryegrass
(Lolium rigidum) in faba bean (Vicia faba L.) in Southern
Australia. Weed Technology 29(3): 578-586.
Sang, S., Wang, Y., Yao, G., Ma, T., Sun, X., Zhang, Y., Su, N., Tan, X.,
Abbas, H.M.K., Ji, S. & Zaman, Q.U. 2024. A critical review of conventional
and modern approaches to develop herbicide‐resistance in rice. Physiologia
Plantarum 176(2): e14254.
Shen, X., Gao, X., Eneji, A.E. & Chen, Y. 2013. Chemical control of
weedy rice in precise hill-direct-seeded rice in South China. Weed Biology
and Management 13(1): 39-43.
Strom, S.A., Hager, A.G., Seiter, N.J., Davis, A.S. & Riechers, D.E.
2020. Metabolic resistance to S-metolachlor in two waterhemp (Amaranthus
tuberculatus) populations from Illinois, USA. Pest Management Science 76(9): 3139-3148.
Sudianto, E., Neik, T.X., Tam, S.M., Chuah, T.S., Idris, A.A., Olsen, K.M.
& Song, B.K. 2016. Morphology of Malaysian weedy rice (Oryza sativa):
Diversity, origin and implications for weed management. Weed Science 64(3): 501-512.
Székács, A. 2021. Herbicide mode of action. In Herbicides, edited by
Mesnage, R. & Zaller, J.G. Elsevier. pp. 41-86.
Unan, R., Azapoglu, O., Deligoz, İ., Mennan, H. & Al-Khatib, K. 2024. Gene flow and
spontaneous mutations are responsible for imidazolinone herbicide-resistant weedy rice (Oryza sativa L.). Pesticide
Biochemistry and Physiology 198: 105746.
Wang,
H.Q., Dai, W.M., Zhang, Z.X., Li, M.S., Meng, L.C., Zhang, Z., Lu, H., Song,
X.L. & Qiang, S. 2023. Occurrence pattern and morphological polymorphism of
Chinese weedy rice. Journal of Integrative Agriculture 22(1): 149-169.
Yean,
R.A., Dilipkumar, M., Rahman, S. & Song, B.K.
2021. A two-in-one strategy: Target and nontarget site mechanisms both play
important role in IMI-resistant weedy rice. International Journal of
Molecular Sciences 22(3): 982.
Yu, X.,
Tang, W., Yang, Y., Zhang, J. & Lu, Y. 2020. Comparative transcriptome
analysis revealing the different germination process in
aryloxyphenoxypropionate-resistant and APP-susceptible Asia Minor bluegrass (Polypogon fugax). Plants 9(9): 1191.
Yuan,
G., Tian, Z., Li, T., Qian, Z., Guo, W. & Shen, G. 2021. Cross-resistance
pattern to ACCase-inhibiting herbicides in a rare
Trp-2027-Ser mutation chinese sprangletop (Leptochloa chinensis)
population. Chilean Journal of Agricultural Research 81(1): 62-69.
Zakaria,
N. & Ahmad Hamdani, M.S. 2023. Growth and morphological characteristics of
Asp376Glu mutation in AHAS-resistant and-susceptible yellow burrhead (Limnocharis flava (L.) Buchenau)
populations. Journal of Agriculture and Crops 9(1): 97-104.
*Corresponding author; email: azizihj@upm.edu.my